The John Deere 9000 Series Self-Propelled Forage Harvesters (SPFH) have been developed with a clear focus on machine performance: more throughput and less fuel consumption while providing maximum uptime and low cost of operation.
A key success factor is the concept of lower engine rpm at higher harvesting component speeds.
The top-model 9700, 9800, and 9900 SPFH are equipped with a Liebherr 12-cylinder V-engine with 24-L displacement. The Liebherr D9512 is a state-of-the-art engine and delivers what a high-performance forage harvester requires:
The broad maximum power range of the Liebherr V12 engine cuts off the less-efficient rpm area above 1800 rpm. The rising torque curve down to 1300 rpm enables efficient operation of the machine in the lower rpm range.
To reach maximum efficiency and performance, all machine component speeds are re-worked and laid out for best function in the 1400 to 1800 engine rpm range. This also leads to better fuel efficiency with an optimum range from 1250 to 1600 rpm, where the engine has its lowest specific fuel consumption (g/kWh).
This unique concept delivers undisputed customer value:
*Compared to replaced models
Liebherr is a trademark of Liebherr-International AG.
Overview
John Deere self-propelled forage harvesters (SPFH) set new standards in kernel processing performance. Proven in independent tests during corn harvest in 2016 and 2017, John Deere kernel processors (KP) deliver smashed kernels and highly processed plants that growers expect. With two different models, the John Deere Premium KP™ kernel processor and the John Deere XStream KP™ kernel processor, all different needs will be satisfied.
Additional details
All John Deere SPFH can be operated with or without a kernel processing unit in position. When not in use, a crop transition chute (or grass chute) swings into position with a few turns of a crank. The crop transition chute comes standard on all harvesters.
The SPFH feature the AutoLube central greasing harness; the respective central greasing equipment is available on the Premium KP kernel processor. The XStream KP kernel processor features automatic pressurized oil lubrication.
The John Deere Premium KP is available for the 9500 to 9800 models, and the John Deere XStream KP is available for all 9000 Series models. The 9900 model can only be equipped with an XStream KP.
On the 9000 Series, the proven John Deere Premium KP can be installed on the 9500 through 9800 models. With their highly intense processing, they deliver excellent forage quality at any length of cut.
The main features of the Premium KP are:
The following rolls are available for the Premium KP:
With the option of Dura Line rolls, a longer lifetime and less wear can be reached, resulting in lower cost of operation.
For easy and uncomplicated mounting and dismounting of the KP, a crane with electric winch can be installed as an option.
The following diagram shows the complete John Deere Premium KP offering with all possible combinations.
Sawtooth (118/118 teeth) – code 3734 |
||
John Deere Premium KP with:
|
Dura Line sawtooth (118/118 teeth) – code 3738 |
|
Dura Line sawtooth (178/178 teeth) – code 3743 |
The following additional options are also available for the Premium KP.
The John Deere XStream KP is the heavy-duty solution made for high throughput and high-horsepower machines and stands for extreme processing at any length of cut in any crop and any conditions.
The XStream KP rolls are manufactured and delivered by Scherer Inc., located in South Dakota, United States. The kernel processor is supplied ex-factory by Scherer Inc. and fits on all 9000 Series models. As Scherer Inc. has a strong focus on dairy forage production and is the leading company in KP roll designs and manufacturing since 1999, a strong statement is set regarding kernel processing and forage quality.
More information about Scherer Inc. can be found on their website: https://www.schererinc.com/
The main features of the XStream KP are:
The following rolls are available for the XStream KP:
In comparison to the Dura Line sawtooth rolls, the Dura Line XCut rolls have a spiral groove sawtooth profile that delivers excellent processing, especially at long lengths of cut. The spiral groove design delivers highly processed plants and smashed kernels.
For easy and uncomplicated mounting and dismounting of the KP, a crane with electric winch can be installed as an option.
The following diagram shows the complete John Deere XStream KP offering with all possible combinations
Dura Line sawtooth (110/145 teeth) – code 3750 |
||
Requires:
|
Dura Line XCut sawtooth with spiral groove (110/145 teeth) – code 3751 |
|
Dura Line XCut sawtooth with spiral groove for advanced (145/165 teeth) – code 3752 |
The following additional options are also available for the XStream KP.
Due to increased machine usage (chopping more tons per hour), standard high-quality steel parts need to be replaced more frequently. Since 2010, John Deere has been meeting the challenge and exceeding expectations with Dura Line wear parts.
Dura Line components were developed by John Deere and are installed in high wear spots on the self-propelled forage harvesters (SPFH), mainly in the crop flow. The technology is normally used for heavy-duty environments such as mining and machine tooling. It is the highest material quality in the industry that is installed on an SPFH.
Dura Line guarantee
The Dura Line guarantee provides a specified number of engine hours or time of usage (whichever comes first) for the different Dura Line liners. The Dura Line guarantee was first introduced in 2017 and is valid for all 8000 and 9000 Series SPFH models. Dura Line liners damaged from foreign material or misuse are excluded. Only parts that are completely worn are replaced.
For more information about the Dura Line guarantee, contact the local sales organization.
Dura Line packages
The John Deere Dura Line crop flow liners come in three packages. Depending on the individual harvesting requirements, there is a perfect package for every need.
# | Dura Line component | Basic | Premium | Ultimate |
1 | Spiral band | √ | √ | √ |
2 | Accelerator band | √ | √ | √ |
3 | Spout flap | √ | √ | √ |
4 | Spout wear liners | √ | √ | |
5 | Front chute base liner | √ | √ | |
6 | Grass chute base liner | √ | ||
7 | Accelerator side wall liners | √ | ||
8 | Front chute side liners | √ | ||
9 | Transition front liners | √ | ||
10 | Dura Line™ smooth roll scraper | √ | √ | √ |
11 | Dura Line™ knife holder | √ | ||
12 | Dura Line™ Plus shear bar | √ | √ |
The HarvestLab 3000 sensor mounts to the top of the discharge spout and takes accurate dry matter and ingredient readings (more than 4000 measurements per second) of the crop through the sapphire glass lens as crop passes through the spout. This is the same technology forage labs use to measure dry matter. HarvestLab 3000 with John Deere Constituent Sensing measures dry matter and constituents like sugar, starch, acid detergent fiber (ADF), neutral detergent fiber (NDF), crude fiber, crude ash, crude protein, crude fat, Metabolic Energy and ELOS depending on the crop. In addition, the HarvestLab 3000 sensor can also be used as a stationary unit.
Crop type and constituent sensing
Crop type | Moisture/ dry matter | Crude protein | Crude starch | uNDF | ADF | Crude sugar | Crude Ash |
Corn | X | X | X | X | X | --- | X |
Alfalfa | X | X | --- | X | X | X | X |
Whole crop silage | X | X | X | X | X | X | X |
Grass | X | --- | --- | --- | --- | --- | --- |
When HarvestLab 3000 is used in conjunction with Harvest Monitor™ system, a wealth of important information becomes available to the operator, including productivity in acres per hour, throughput in tons per hour, total area harvested, total crop mass harvested, yields, and dry matter. To measure and document the constituents, a G5Plus Universal Display is required. All data documented on the G5Plus Universal Display is shown in John Deere Operations Center.
When the HarvestLab 3000 is used in conjunction with an 8000 or 9000 Series Self-Propelled Forage Harvester (SPFH) and a GreenStar™ display, AutoLoc functionality is automatically present. AutoLoc automatically varies the length of cut according to the desired crop-dry matter correlation settings based on the dry matter readings from the HarvestLab 3000 sensor. With the AutoLoc adjustment, bunk density is improved and a high forage quality is reached.
AutoLoc, a feature exclusive to John Deere and unique to the market, brings added value to the HarvestLab sensor and John Deere SPFH. AutoLoc works in conjunction with the HarvestLab 3000 sensor and IVLOC transmission to automatically adjust the length of cut (LOC) based on crop moisture levels to improve bunk density and reduce long particles in dry corn. Nutritionists, herdsmen, and SPFH operators will all benefit from this innovation.
John Deere is leading the industry in providing real-time information that matters most to forage production. Quality forage comes from properly packed silage, which is directly related to the moisture content and LOC of the crop.
LOC changes are made automatically in the field based on moisture readings and predetermined settings determined by operator requirements. No in-field calibration is required to load the LOC requirements; the operator simply uses the GreenStar™ display to program the desired LOC settings at different moisture levels.
When moisture levels of crop in the field change, the IVLOC drive automatically responds to either increase or decrease the feedroll speed, which in turn changes the LOC. If moisture levels of the crop are outside of the desired range, the IVLOC transmission adjusts and limits the LOC based on the maximum and minimum LOC settings as determined by the operator.
AutoLoc solves the dry matter and LOC puzzle
According to the accurate moisture readings, AutoLoc is able to adjust the proper LOC automatically in steps as small as 1 mm (0.04 in.). This process is faster and more accurate than any operator could do manually because of all the other important operating functions being performed. This can increase overall efficiency dramatically.
With AutoLoc, the SPFH operator simply sets the minimum, optimum, and maximum moisture levels and the corresponding lengths of cut. AutoLoc then creates a linear curve between the minimum and the optimum and between the optimum and the maximum. LOCs are then determined based on those lines.
For example, if the optimum LOC were set to 15 mm (0.59 in.) at 68 percent moisture and 8 mm (0.31 in.) at 50 percent moisture, and the actual moisture of the crop was 63 percent, AutoLoc would change the LOC to be 13 mm (0.51 in.) based on the linear curve it created.
Forage harvester performance and AutoLoc
The following equipment is required for AutoLoc functionality:
Why AutoLoc is a must to ensure silage quality and overall profitability
It impacts the silage compaction in the bunker to ensure the quality of feed being stored is the best quality possible.
Silage density and AutoLoc
Good silage starts with high bunk density to preserve the crop value. This is the main objective for both dairy/beef producers and biogas plants. Many factors are involved in achieving high bunk density, including type of crop, moisture levels, length of cut, bunk filling speed, and compaction machinery.
Some of these factors cannot be easily changed while harvesting. AutoLoc adds an improved sense of control to the harvesting and silage storage operation. Operators do not need to compromise when choosing the proper length of cut based on moisture. AutoLoc takes care of this chore automatically.
Oftentimes, producers are so focused on getting the job done that important tasks and details are overlooked during the harvesting operation. Knowing the growing period for corn silage covers five months growing in the field and only a few days harvesting for 10 to 12 months of feeding, the process of the silage harvest and storage should be managed as well as possible.
The impact of the silage quality, which can be harvested and stored in just a few days, can have a huge impact on income throughout the entire year. The silage cost is a major part of the expenses in the dairy/beef and biogas plant businesses. Poor forage quality can cost tens of thousands of dollars per year in increased feed costs resulting in the producer having to invest in additional silage to reach the desired feed ration.
Spoilage/reheating and seeping losses are the biggest problems in silage bunks. These problems often happen due to insufficient compaction and an incorrect LOC. To achieve the right amount of silage compaction and keep as much air out of the silage as possible, the LOC has to be adjusted according to the moisture levels of the crop - the wetter the material, the bigger the particle size.
While varying lengths of cut can dramatically help to achieve high density levels, the length of cut of the material must be consistent in order to maintain normal rumination, chewing, and saliva production in the rumen. If the particles are too small, the food does not fit anymore with the process of the cow rumen and the compaction becomes difficult due to the instability of the material.
For this reason, John Deere created AutoLoc, which automatically adjusts the length of cut to the moisture value, while staying within the preset LOC range.
Having some limited LOC variations in a bunk silo should not affect the effective fiber in the ration on a daily basis. Using AutoLoc in conjunction with upright or bag silos can vary the effective fiber fed to animals on a daily basis.
Looking at the studies done by Honig and Rohr in 1985, as can be seen in the following table, it is possible to get high-density levels of dryer crop when the crop is chopped at a shorter LOC.
Length of cut |
Bunk density |
|
73 percent moisture |
64 percent moisture |
|
4 mm (0.16 in.) |
205 kg/m3 (12.8 lb/cu ft) |
179.7 kg/m3 (11.2 lb/cu ft) |
7 mm (0.28 in.) |
192.2 kg/m3 (12.0 lb/cu ft) |
174.6 kg/m3 (10.9 lb/cu ft) |
14 mm (0.55 in.) |
173 kg/m3 (10.8 lb/cu ft) |
157 kg/m3 (9.8 lb/cu ft) |
Total Care is an extended service program that allows customers to secure annual maintenance costs and be in a better position to prevent downtime during harvest. Total Care is available to customers purchasing a new 8000 or 9000 Series Self Propelled Forage Harvester. There are two plan offerings, Total Care Select and Total Care Ultimate. Both Total Care plans are designed to help you maintain the original performance and uptime of your new machine.
Total Care Select | PowerGard Comprehensive Requirement | Dura Line Requirement |
3 years/1500 hours | 4 years/1500 hours | Basic, Premium, or Ultimate |
3 years/2000 hours | 4 years/2500 hours | Basic, Premium, or Ultimate |
3 years/2500 hours | 4 years/3000 hours | Basic, Premium, or Ultimate |
3 years/3000 hours | 4 years/3500 hours | Basic, Premium, or Ultimate |
Total Care Ultimate | PowerGard Comprehensive Requirement | Dura Line Requirement |
3 years/1500 hours | 4 years/1500 hours | Ultimate |
3 years/2000 hours | 4 years/2500 hours | Ultimate |
3 years/2500 hours | 4 years/3000 hours | Ultimate |
3 years/3000 hours | 4 years/3500 hours | Ultimate |
Total Care Select | Inspection Plan | Maintenance Plan | Wear Parts |
3 years/1500 hours | Three inspections | Three scheduled maintenance events | Wear parts coverage allowance included |
3 years/2000 hours | Four inspections | Four scheduled maintenance events | |
3 years/2500 hours | Five inspections | Five scheduled maintenance events | |
3 years/3000 hours | Six inspections | Six scheduled maintenance events |
Total Care Ultimate | Inspection Plan | Maintenance Plan |
Wear Parts |
3 years/1500 hours | Three inspections | Six scheduled maintenance events | Wear parts coverage allowance included |
3 years/2000 hours | Four inspections | Eight scheduled maintenance events | |
3 years/2500 hours | Five inspections | Ten scheduled maintenance events | |
3 years/3000 hours | Six inspections | 12 scheduled maintenance events |
For more information, see the John Deere Protect website.
Additional information in Dura Line wear parts packages.
Maximum power | At 1800 rpm (ECE R120): 640 kW 870 PS / 858 hp |
Engine | Type Liebherr® Exhaust emission regulation compliancy: Final Tier 4 / EU Stage V Displacement 24.2 L 1476.8 cu in. Model D9512 A7 04 Cylinders V 12 |
Fuel system | Common rail plus four valves |
Fuel tank capacity | 1,500 L 396.3 U.S. gal. |
DEF tank capacity ( for FT4 or EU Stage V emission level) | 103 L 23.8 U.S. gal. |
Maximum power | At 1800 rpm (ECE R120): 640 kW 870 PS / 858 hp |
Fuel tank capacity | 1500 L 396.3 U.S. gal. |
DEF tank capacity ( for FT4 or EU Stage V emission level) | 103 L 23.8 U.S. gal. |
Type | Liebherr Exhaust emission regulation compliancy: Final Tier 4 / EU Stage V |
Model | D9512 A7 04 |
Displacement | 24.2 L 1476.8 cu in. |
Cylinders | V 12 |
Fuel system | Common rail plus four valves |
Air compressor | Base |
Cooling fan drive | Direct |
Ground drive | ProDrive™ system, autoshift transmission, differential lock (automatic and manual), automatic wet brake system Engine rpm on road: 1200-1800 rpm |
Hydraulics | Load sensing |
Main clutch | Dry clutch |
Number of discs | Two discs |
Main driveband | Reinforced with Kevlar® inserts |
Belt tensioning | Active, hydraulic pressure |
Main driveband, polybelt belts | Nine grooves |
Type/voltage | 12 / 24 V |
Batteries/battery quantity/capacity | 3 x 174 amp-hr |
Alternator | 12 V - 200 amp 24 V - 140 amp |
Hydraulic system capacity | 50 L 13.2 U.S. gal. |
Differential lock | Manual and automatic |
Maximum transport speed | ProDrive system: 20/25/30/40 km/h 12.4/15.5/18.6/24.9 mph |
Rear axle type | Hydromechanical 4WD |
Automatic wet brake system | Standard |
Engine speed management | Standard |
Tilt and extend steering column | Standard |
Air conditioning and heater | Standard: ClimaTrak™ control |
Cool box | Optional |
Trainee seat | Standard |
Hectare counter | Standard |
Operator information system | Cornerpost display |
CAN bus electronics | Standard |
Operator's seat | Standard: Air-suspension seat |
Panoramic view windows | Standard |
Side window wiper | Rear and side window wiper optional Parallel-type windscreen wiper |
Electric adjust and heated | Optional on rearview mirrors |
Rearview mirrors | Standard |
Yield monitoring | Harvest Monitor™ optional |
Documentation | Harvest Doc™ optional |
Crop analysis | HarvestLab™ 3000 optional |
Length-of-cut control based on crop parameter | Standard: Infinitely variable length-of-cut (IVLOC™) Optional: AutoLoc™ system - use with HarvestLab |
Assisted steering systems | Optional: AutoTrac™, Manual RowSense™, AutoTrac RowSense, Machine Sync |
Width | Wide body channel |
Crop flow components | Low-friction crop flow concept |
Infinitely variable header drive | Standard |
Lateral pivoting frame | Standard |
Multicoupler | Standard |
Auto PTO coupler | Optional |
Header drive | Base: Heavy-duty gearbox (i=3.75); pump/motor displacement: 85/80 cc Optional: Extra heavy-duty gearbox (i=4.31); pump/motor displacement: 110/90 cc |
Header height control | Advanced header control (AHC) optional |
Grass pickups (transport width) | 3, 4, 4.5 m 9.8, 13.1, 14.8 ft |
Maize headers | 8, 10 or 12 rows Working width: 6, 7.5, or 9 m 19.7, 24.6 , or 29.5 ft |
Feed roll frame opening | Swing away, 37-45 degree (angle) |
Number | Four |
Metal detector | Standard |
Stone detector | Optional |
Width, front | 830 mm 32.7 in. |
Standard feedroll drive | Hydro feedroll drive IVLOC Infinitely header drive speed |
Type | Dura-Drum™ cutterhead |
Knife drum width | 850 mm 33.5 in. |
Knife drum diameter | 670 mm 26.4 in. |
Speed at rated engine speed | Standard - 1170 rpm Optional - 1350 rpm |
Knife types available (crop) | Straight - grass Curved - corn |
Shear bar options | Grass, corn, Dura Line™ corn, Dura Line Plus |
Reverse rotation | Yes |
Automatic from cab | Yes, remote from cab |
Sharpening modes | Grinding and finishing |
Type | John Deere Premium KP™, John Deere XStream KP™ |
Quick-change | Quick kernel processor - swing in/swing out |
Quick KP removal | Optional crane with remote-controlled electric hoist |
Housing | Standard KP housing |
Lubrication | Grease |
Roll diameter | 240 mm 9.45 in. |
Maize - standard sawtooth or Dura Line™ roll teeth number (speed differential) | 118 (32 or 40 percent) |
Whole crop - standard sawtooth roll teeth number (speed differential) | 178 (32 or 40 percent) |
Weight | 163.3 kg 360 lb |
Housing | Heavy-duty KP housing |
Lubrication | Pressurized oil |
Roll diameter | 250 mm 9.8 in. |
Maize - Dura Line sawtooth or XCut roll teeth number (speed differential) | 110/145 (50 percent) |
Whole crop - Dura Line XCut roll teeth number (speed differential) | 145/165 (50 percent) |
Rotor diameter/housing width | 560 / 620 mm 22.86 / 24.41 in. |
Number of blades | 10 |
Speed (option) | 1890 rpm |
Rotation, degrees | 210 degree (angle) |
Hydraulic height position | Standard: Hydraulic raise and lower Optional: Automatic spout positioning |
Double-cap deflection | Standard |
Reach from center line (Optional) | 6 or 8 row: 4.73 m 15.5 ft 10 row: 5.87 m 19.3 ft 12 row: 6.71 m 22 ft |
Working height (maximum) | Height to spout: 6.6 m 21.65 ft |
Rotary radiator screen cleaner | Standard |
Automatic lubrication system | Standard: AutoLube |
Engine oil and filter change duration | 1000 hours |
Transport length (without header) | 6.6 m 21.7 ft |
Transport width (without header) | 3.2-3.8 m 10.5-12.5 ft |
Transport height (to cab roof) | Below 4 m 13.12 ft |
Prices and availability may vary by dealer. Taxes not included. Images for illustration purposes only. Financing subject to approved credit by John Deere Financial. Down payment may be required to receive financing. Restrictions may apply outside of Hutson’s area of responsibility. See dealer for details.